Ordering (signless) Laplacian spectral radii with maximum degrees of graphs
نویسندگان
چکیده
منابع مشابه
Ordering of the signless Laplacian spectral radii of unicyclic graphs
For n ≥ 11, we determine all the unicyclic graphs on n vertices whose signless Laplacian spectral radius is at least n− 2. There are exactly sixteen such graphs and they are ordered according to their signless Laplacian spectral radii.
متن کاملSIGNLESS LAPLACIAN SPECTRAL MOMENTS OF GRAPHS AND ORDERING SOME GRAPHS WITH RESPECT TO THEM
Let $G = (V, E)$ be a simple graph. Denote by $D(G)$ the diagonal matrix $diag(d_1,cdots,d_n)$, where $d_i$ is the degree of vertex $i$ and $A(G)$ the adjacency matrix of $G$. The signless Laplacianmatrix of $G$ is $Q(G) = D(G) + A(G)$ and the $k-$th signless Laplacian spectral moment of graph $G$ is defined as $T_k(G)=sum_{i=1}^{n}q_i^{k}$, $kgeqslant 0$, where $q_1$,$q_2$, $cdots$, $q_n$ ...
متن کاملThe signless Laplacian spectral radii of modified graphs
In this paper, various modifications of a connected graph G are regarded as perturbations of its signless Laplacian matrix. Several results concerning the resulting changes to the signless Laplacian spectral radius of G are obtained by solving intermediate eigenvalue problems of the second type. AMS subject classifications: 05C50
متن کاملsignless laplacian spectral moments of graphs and ordering some graphs with respect to them
let $g = (v, e)$ be a simple graph. denote by $d(g)$ the diagonal matrix $diag(d_1,cdots,d_n)$, where $d_i$ is the degree of vertex $i$ and $a(g)$ the adjacency matrix of $g$. the signless laplacianmatrix of $g$ is $q(g) = d(g) + a(g)$ and the $k-$th signless laplacian spectral moment of graph $g$ is defined as $t_k(g)=sum_{i=1}^{n}q_i^{k}$, $kgeqslant 0$, where $q_1$,$q_2$, $cdots$, $q_n$ ...
متن کاملThe (signless) Laplacian spectral radii of c-cyclic graphs with n vertices and k pendant vertices
A connected graph is called a c-cyclic graph if it contains n vertices and n + c − 1 edges. Let C(n, k, c) denote the class of connected c-cyclic graphs with n vertices and k pendant vertices. Recently, the unique extremal graph, which has greatest (respectively, signless) Laplacian spectral radius, in C(n, k, c) has been determined for 0 ≤ c ≤ 3, k ≥ 1 and n ≥ 2c + k + 1. In this paper, the un...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Discrete Mathematics
سال: 2015
ISSN: 0012-365X
DOI: 10.1016/j.disc.2014.09.007